A Newton Method for Shape-Preserving Spline Interpolation
نویسندگان
چکیده
Abstract. In 1986, Irvine, Marin, and Smith proposed a Newton-type method for shapepreserving interpolation and, based on numerical experience, conjectured its quadratic convergence. In this paper, we prove local quadratic convergence of their method by viewing it as a semismooth Newton method. We also present a modification of the method which has global quadratic convergence. Numerical examples illustrate the results.
منابع مشابه
TENSION QUARTIC TRIGONOMETRIC BÉZIER CURVES PRESERVING INTERPOLATION CURVES SHAPE
In this paper simple quartic trigonometric polynomial blending functions, with a tensionparameter, are presented. These type of functions are useful for constructing trigonometricB´ezier curves and surfaces, they can be applied to construct continuous shape preservinginterpolation spline curves with shape parameters. To better visualize objects and graphics atension parameter is included. In th...
متن کاملShape-preserving interpolation by G1 and G2 PH quintic splines
The interpolation of a planar sequence of points p0, . . . , pN by shape-preserving G 1 or G2 PH quintic splines with specified end conditions is considered. The shape-preservation property is secured by adjusting ‘tension’ parameters that arise upon relaxing parametric continuity to geometric continuity. In the G2 case, the PH spline construction is based on applying Newton–Raphson iterations ...
متن کاملQuasi-interpolation operators based on a cubic spline and applications in SAMR simulations
In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: a b s t r a c t In this paper, we consider the properties of monotonicity-preserving and global conservation preserving for ...
متن کاملOn Convexity Preserving C1 Hermite Spline Interpolation
The aim of this paper is to present a general approach to the problem of shape preserving interpolation. The problem of convexity preserving interpolation using C Hermite splines with one free generating function is considered.
متن کاملShape-preserving interpolation of spatial data by Pythagorean-hodograph quintic spline curves
The interpolation of discrete spatial data — a sequence of points and unit tangents — by G1 Pythagorean– hodograph (PH) quintic spline curves, under shape constraints, is addressed. To achieve this, a local Hermite scheme incorporating a tension parameter for each spline segment is employed, the imposed shape constraints being concerned with preservation of convexity at the knots and the sign o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Journal on Optimization
دوره 13 شماره
صفحات -
تاریخ انتشار 2002